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PROSPECT

Breast Cancer Gene 1 (BRCA1): Role in Cell
Cycle Regulation and DNA Repair—Perhaps
Through Transcription

Kumaravel Somasundaram*

Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India

Abstract Mutations of BRCAT1 gene are associated with more than half the cases of hereditary breast cancer. Breast
cancer formation in BRCAT mutation carriers is generally accompanied by loss of the wild-type allele, suggesting that
BRCA1 protein may function as a tumor suppressor. The human BRCA1 gene encodes a nuclear protein of 1863 amino
acids. Although several lines of evidences suggest that BRCA1 protein may have arole to play in cell cycle regulation, DNA
repair, and other processes, the exact mechanism of functioning by BRCAT protein is not clear. Recent evidences from
several laboratories suggest that BRCAT may regulate the expression of many genes like p21WATY"! Gadd45, Cyclin B1,
DBB2, XPC, 14-3-36 and others at the level of transcription. These BRCAT-regulated gene products have been implicated
directly or indirectly in cell cycle regulation and DNA repair. Thus a plausible model is proposed in which BRCA1 protein
may bring its effects on cell cycle and DNA repair through its ability to modulate gene expression at the level of

transcription. J. Cell. Biochem. 88: 1084-1091, 2003.
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Breast cancer is one of the most common
cancers affecting women worldwide. It is esti-
mated that approximately one in eight to ten
women living in western countries will develop
breast cancer during their lifetime [Casey,
1997]. Most of the breast cancers are sporadic.
About 5—-10% of breast cancers are considered to
be familial. Of the breast cancer susceptibility
gene identified so far, BRCA1 and BRCA2 are
the most important “high risk” genes account-
ing for majority of families with multiple cases
of breast and ovarian cancer [Antoniou et al.,
2002]. Women who inherit a mutant allele of
either of these two tumor suppressors genes
have a significantly increased lifetime breast
cancer risk compared to the general population.
Increased risk to develop breast cancer is due to
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the inheritance of mutant copy of the gene and
the cancer occurs when the second copy of the
gene is lost or mutated [Smith et al., 1992;
Nauhausen and Marshal, 1994]. Surprisingly,
even though the inherited mutations of BRCA1
and BRCA2 are responsible for most of the
familial breast cancer cases, neither gene is
clearly involved in the development of sporadic
breast cancer. Even though the majority of
breast cancers are of sporadic type, the study of
hereditary breast cancer has provided valuable
information about breast cancer in general.
Several lines of approach have been attempt-
ed by different laboratories to define the bio-
chemical function of BRCA1l protein. BRCA1
has thus far implicated in regulation of cell cycle
checkpoints, apoptosis, DNA-damage repair,
transcription-coupled repair and ubiquitin
ligase activity. Although the participation of
BRCAL1 in these functions has been clearly de-
monstrated, the exact mechanism of BRCA1
function remains unclear. The presence of func-
tional motifs on BRCA1 protein and the identi-
fication of many BRCAL interacting cellular
proteins linked to those functions shed some
light about the possible mode of function by
BRCAL. Involvement in DNA repair and cell
cycle regulation by far seem to be the two most
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important well-studied functions of BRCAI.
After the initial report on the identification of
transcription activation domain in the C-termi-
nus of BRCA1 [Chapman and Verma, 1996;
Monterio et al., 1996], several transcriptional
targets of BRCA1 have been identified. The
functions carried out by the many of the genes
isolated as BRCAIl-transcriptional targets,
either induced or repressed, adequately explain
a possible mechanism in which BRCA1 would
participate in DNA repair and cell cycle regula-
tion through its ability to regulate gene expres-
sion at the level of transcription. The main
focus of this review will be the various BRCA1
transcriptional targets so far identified and how
BRCAL1 could be linked to its functions, partic-
ularly to DNA repair and cell cycle regulation,
through these targets.

STRUCTURE OF BRCA1 PROTEIN

The first breast cancer susceptibility gene
(BRCA1) was found on chromosome 17q12-21
in humans and encodes an 1863 amino acid
polypeptide (Fig. 1) [Mikiet al., 1994]. BRCAlis
alarge and complex gene about 100 kb long with
atranscript size of 7.8 kb. The N-terminal end of
BRCA1 contains a zinc-finger domain with a
conserved pattern of cysteine and histidine re-
sidues, which are found in variety of proteins
that interact with DNA either directly or
indirectly [Miki et al., 1994]. The N-terminus
of BRCAL1 also interacts with BARD1 [Wu et al.,
1996], BAP-1 [Jensen et al.,, 1998], E2F-1
[Wang et al., 1997]. Exon 11 of BRCAL is the

largest exon, encoding over 60% of the protein,
and contains two nuclear localization signals
[Thakur et al., 1997]. Cellular proteins that
interact with exon 11 of BRCA1 either directly
or indirectly are RAD51 [Scully et al., 1997c],
RADA50 [Zhong et al., 1999], p53 [Zhang et al.,
1998], RB [Aprelikova et al., 1999], c-Myc
[Wang et al., 1998]. The C-terminus of BRCA1,
which contains transcription activation domain
[Chapman and Verma, 1996, Monterio et al.,
1996] and two BRCT (BRCA1 C-Terminal do-
main) domains [Koonin et al., 1996], interacts
with RNA Polymerase II [Scully et al., 1997a],
p300/CBP [Cui et al., 1998; Neish et al., 1998],
BRCA2 [Chen et al.,, 1998], RNA helicase
[Anderson et al., 1998], and CtIP [Yu et al.,
1998; Li et al., 1999].

TRANSCRIPTIONAL REGULATION
BY BRCAT1

The first line of evidence implicating BRCA1
in transcription control came from an observa-
tion that the C-terminus of BRCA1 (amino acids
1528-1863), when fused to the GAL4 DNA-
binding domain and tranfected into -cells,
activates transcription of GAL4-dependent pro-
moters [Chapman and Verma, 1996; Monterio
et al., 1996]. Furthermore, some of the BRCA1
mutations found in BRCAl-associated tumors
abolish transcriptional activity in this assay, im-
plying that the loss of transcriptional activation
by BRCA1 may be involved in tumorigenesis.
Subsequent to this observation, many BRCA1
targets genes have been identified. Induction of
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Fig. 1. A schematic diagram of BRCA1 protein is shown in the middle. Shown below are names and the
interacting regions (with BRCA1 protein) of BRCAT1 interacting proteins. Various functional domains of

BRCAT1 are shown above the BRCAT1 protein.
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p21WAFVCIPL gither dependent or independent

of p53 by BRCA1 has been shown by several
groups [Somasundaram et al., 1997, 1999;
Ouchi et al., 1998; Zhang et al., 1998; Li et al.,
1999; Maclachlan et al., 2000; Welcsh et al.,
2002]. Similarly transcriptional activation of
Gadd45 [Harkin et al., 1999; Maclachlan et al.,
2000; Mullan et al., 2001; Fan et al., 2002;
Hartman and Ford, 2002], 14-3-36 [Aprelikova
etal., 2001], p27(Kipl) [Williamson et al., 2002],
DDB2 [Takimoto et al., 2002; El-Deiry, 2002;
Hartman and Ford, 2002], XPC [Hartman and
Ford, 2002] and TNF-o [Houvras et al., 2000]
has been shown. BRCA1 has also been shown to
repress the expression of certain genes at the
level of transcription. Cyclin B1 [Maclachlan
et al., 2000], estrogen receptor o (ERo)-respon-
sive genes [Fan et al., 1999] and insulin growth
factor 1 IGF1) [Maor et al., 2000] are repressed
by BRCAL.

Although the transcriptional regulation by
BRCA1 has been shown to be specific, many
in the field have questioned the physiological
relevance of the transcriptional activity of
BRCA1. DNA damage induced phosphorylation
of BRCA1 protein is well documented [Scully
et al., 1997b; Thomas et al., 1997]. So far three
kinases—ATM [Cortez et al., 1999], ATM-
related kinase (ATR) [Tibbetts et al., 2000],
and hCds1 (CHK2) [Lee et al., 2000] have been
shown to phosphorylate BRCA1 after DNA
damage. The link between transcriptional reg-
ulation by BRCA1 and DNA damage was provid-
ed by the following observation. The activation
potential of BRCA1 is partially suppressed by
the CtIP-CtBP complex, which binds to the
BRCT domain of BRCA1 [Li et al., 1999, 2000].
The association between BRCA1 with CtIP is
abrogated by DNA damage induced ATM-
dependent phosphorylation of CtIP, thus reliev-
ing the repression of transactivation by BRCA1.
Thus the DNA damage mediated activation of
BRCA1 transcription function suggests that
transcriptional activation BRCA1l is indeed
physiological.

Another lacuna is that there is no evidence
that BRCAL is able to bind to promoter regions
of the target genes. BRCAl binds to DNA
without any sequence specificity, which may
be an important part of its role in DNA repair
transcription [Paull et al., 2001]. Mondal and
Parvin [1999] have proposed that BRCA1
functionally links certain upstream enhancer-
binding factors to the basal transcription

machinery in the holoenzyme and that BRCA1
may act as a transcriptional coactivator. In fact,
a number of observations, as listed below,
confirm the above hypothesis. BRCA1 protein
is a component of the RNA polymerase II
holoenzyme, and a deletion of the C-terminal
11 amino acids of BRCA1 reduces its association
with the RNA polymerase IT holoenzyme [Scully
et al., 1997a; Neish et al., 1998]. BRCAL1 also
interacts with RNA polymerase II via a linkage
with RNA helicase [Anderson et al., 1998]. Thus
it is possible that BRCA1 interact with DNA-
bound transcription factors to mediate signal to
RNA polymeraseII. In fact, transcriptional acti-
vation by BRCAL1 has been shown to occur in
many examples by its ability to associate with
sequence-specific DNA-binding transcription
factors. BRCA1 binds to p53 resulting in the
activation of p21WAFVCIPL [OQychi et al., 1998;
Zhang et al., 1998], 14-3-36 [Aprelikova et al.,
2001], and DDB2 [Takimoto et al., 2002].
Interaction between ATF1 and BRCA1 results
in the activation of TNF-o [Houvras et al., 2000].
BRCALI interacts with Oct-1 and NF-YA, which
results in the activation of Gadd45 [Fan et al.,
2002]. BRCA1 also binds to ZBRK1, which is a
transcription factor binding specifically to a
DNA sequence, GGGxxxCAGxxxTTT [Zheng
et al., 2000]. ZBRK1 binding sequence motif is
present in the promoter regions of many trans-
criptional targets of BRCA1 like p21WAF/CIP1
(3 sites), Gadd45, and EGR1. Coexpression of
ZBRK1 and BRCA1 were found to actually re-
press the Gadd45 promoter, contrary to what
one would expect given previous findings of acti-
vation of Gadd45 expression by BRCAL. Thus
far, it is hypothesized that overexpression of
BRCA1 may titrate ZBRK1 away from the pro-
moter, allowing transcription to occur. In addi-
tion, DNA damage induced phosphorylation of
BRCAL1 and binding of BRCAL1 to other repres-
sors like CtIP etc. may actually modify this
regulation [Maclachlan and El-Deiry, 2000].
Thus it appears that BRCA1 may regulate tran-
scription as a coactivator by binding to sequence-
specific DNA-binding transcription factors.

LINK BETWEEN TRANSCRIPTIONAL
REGULATION BY BRCAT1
AND ITS FUNCTIONS

Although, BRCA1 has been implicated in a
variety of functions, its role in cell cycle
regulation and DNA repair has been very well
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documented [MacLachlan and El-Deiry, 2002;
Venkitaraman, 2002]. An attempt is made
below to link the developments with regard to
BRCA1-mediated transcriptional regulation to
its functions, particularly cell cycle regulation
and DNA repair (Fig. 2).

Cell Cycle Regulation by BRCAT1

The regulation of cell cycle by BRCA1 has
been demonstrated by several observations.
The initial findings, which include the expres-
sion pattern of BRCA1 mRNA and protein and
the association of BRCA1 with cell cycle reg-
ulatory proteins, suggested the possible role of
BRCAL1 in cell cycle regulation. The expression
of BRCA1 mRNA and protein during different
stages of cell cycle is highly specific, occurring
late in the G1 phase and peaking in the S-phase
[Chen et al., 1996; Gudas et al., 1996; Vaughn

et al., 1996]. Western blot analysis of BRCA1
interacting protein (BIP) complex revealed
binding of antibodies specific for cdc2, cdk2,
cdk4, cyclin A, cyclin B1, cyclin D1, cyclin E,
and E2F-4, suggesting an association between
BRCA1 with these proteins [Wang et al., 1997].
BRCA1lisphosphorylated by kinases associated
with cyclin D and cyclin A as well as by CDK2
in vitro [Chen et al., 1996]. The phosphorylation
of BRCA1 continued throughout S and onto the
G2/M phases, after which it was progressively
dephosphorylated. It is likely that phosphoryla-
tion of BRCA1 may have some functional signi-
ficance asit occursin a cycle dependent manner.

The direct link between BRCA1 and its role in
the cell cycle checkpoints came from the follow-
ing observations. Overexpression of BRCA1l
activated p21WAFVCIPL in a p53-independent
manner and inhibited cell cycle progression into
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Fig. 2. Connection between BRCAT-mediated transcriptional regulation and its role in DNA repair and cell
cycleregulation. The ability of BRCAT to activate (shown by 1) or repress (shown by |) transcription of certain
genes specifically provides another mechanism by which BRCAT1 carries out DNA repair functions either

directly or indirectly by inducing cell cycle arrest.
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S-phase [Somasundaram et al., 1997]. Moreover,
this arrest in G1 phase is dependent on the pre-
sence of p21WAFV/CIPL a5 expression of BRCA1
in isogenic cell lines lacking p21WVAFVCIPL doeg
not lead to G1 arrest [Maclachlan et al., 2000].
In another study, exogenous overexpression of
BRCA1 has been shown to cause Rb-dependent
cell cycle arrest in some cell lines [Aprelikova
et al., 1999]. Exogenous overexpression of
BRCAL also activated p27(Kipl), which may
also contribute to its ability to induce G1 arrest
[Williamson et al., 2002]. BRCA1 overexpres-
sion also resulted in the transcriptional activa-
tion of Gadd45 [Harkin et al., 1999; Maclachlan
et al., 2000]. Introduction of BRCA1 through a
recombinant adenovirus in a variety of cell lines
resulted in the increase of cells with G2/M phase
DNA content [Maclachlan et al., 2000]. Gadd45
has been implicated in G2/M checkpoint, as
Gadd45-knockout mice possess a defective
G2/M checkpoint [Hollander et al., 1999]. A role
for BRCA1 in G2-M checkpoint has been demon-
strated by using mouse embryo fibroblasts
carrying a homozygous deletion of BRCA1 exon
11 [Xu et al., 1999]. Therefore, it is possible
that BRCA1 may in part induce the Gadd45
protein to activate G2/M checkpoint. BRCA1
also has been shown to transcriptionally ac-
tivate 14-3-36 in a pbH3-dependent manner
[Aprelikova et al., 2001]. As 14-3-36 has pre-
viously been shown to be a major G2/M check-
point control gene, 14-3-36 induction may also
play an important role in the BRCA1l-mediated
G2/M checkpoint. Another target gene of
BRCAL1 identified was cyclin B1, which was
actually repressed by exogenous expression of
BRCA1 [Maclachlan et al., 2000]. Repression of
cyclin Bl can easily be linked to BRCA1l
regulated G2/M checkpoint because depletion
of cyclin B1 would lead to inactivation of mitotic
kinase cdc2. Indeed, the same study showed
that exogenous expression of cyclin B1 abro-
gated the G2/M arrest induced by BRCA1l
overexpression.

BRCA1 and DNA Repair

Studies from many laboratories suggested
that BRCAL1 is involved in DNA-damage repair.
One set of evidences came from the findings that
BRCAL1 protein interacts with other cellular
proteins involved in DNA repair and recombi-
nation. The DNA repair proteins with which
BRCAL has been shown to interact are Rad51
[Scully et al., 1997c], BRCA2 [Chen et al.,

1998], hRad50-Hmrell-p95 complex [Zhong
et al., 1999]. Immunoprecipiation studies also
revealed that BRCA1l protein is associated
with a large complex (>2 Mda), called BRCA1-
associated genome surveillance complex (BASC)
[Wang et al., 2000]. BASC is composed of many
proteins involved with DNA repair either
directly or indirectly like Mut S homologue
(MSH2), Mut S homologue 6 (MSH6), Mut L
homologue 1 (MLH1), ATM kinase, Bloom
(BLM), and the hRad50-hMRE11-p95 complex
[Wang et al., 2000].

The second set of evidences from the analysis
of stem cells derived from BRCA1l-deficient
embryo. Mouse embryonic stem cells carrying
homozygous deletion of BRCA1 are defective in
their ability to carry out transcription-coupled
repair and hypersensitive to ionization radia-
tion and hydrogen peroxide [Gowen et al., 1998].
Another report showed that Brecal-deficient
mouse embryonic stem cells have impaired the
repair of chromosomal DNA double-strand
breaks (DSBs) by homologous recombination
[Moynahan et al., 1999]. Mouse embryo with a
BRCAJ1-deficiencey was not only hypersensitive
to y-irradiation but also displayed numerical
and structural chromosomal aberrations [Shen
et al., 1998]. Consistent with this view, Abbott
et al. [1999] showed that a human cancer cell
line carrying a mutated BRCA1 allele is hyper-
sensitive to ionizing radiation. More impor-
tantly, exogenous expression of certain regions
of BRCA1 reversed the radiation sensitive
phenotype.

Above studies involving BRCAl-interacting
proteins and BRCAI knockout mice clearly
demonstrate that BRCA1 has an important
role to play in the DNA repair. The possible
mechanism of action by BCRA 1 could be that
BRCA1 may influence the DNA repair process
through its association the proteins involved in
DNA repair. On the other hand, there is enough
evidence to functionally link the transcriptional
regulation by BRCAL1 to its DNA repair func-
tions. For example, proteins encoded by many
of the transcriptional targets of BRCAL par-
ticipate, either directly or indirectly, in the
DNA damage response, including DNA repair.
BRCAL1 collaborates with p53 to induce DDB2
following UV- and cisplatin-induced damage
via a p53 responsive element present in the
human DDB2 promoter [Takimoto et al., 2002;
El-Deiry, 2002]. Furthermore, the DNA re-
pair activity is significantly increased by the
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introduction of BRCA1 into WT as compared to
DDB2-deficient cells. DDB2 is the smaller
subunit of the DDB heterodimer, which binds
to DNA damaged by UV or cisplatin and is
mutated in a subset of patients with cancer-
prone syndrome Xeroderma pigmentosum com-
plementation group E [Chu and Chang, 1988].
Recent evidence suggests a role for DDB in
enhancing global genomic repair (GGR) of cyclo-
butane pyrimidine dimers [Tang et al., 2000]. In
another observation, Hartman and Ford [2002]
showed that BRCA1 enhances GGR pathway by
transcriptional induction of nucleotide excision
repair (NER) genes XPC, DDB2 and GADD45
in a p53-independent manner. The important
role played by GADD45, DDB2 and XPC gene
products in NER pathway has been demon-
strated previously [Tang et al., 2000; Emmert
et al., 2000; Tran et al., 2002]. Thus the DNA
repair functions of BRCA1 may also be attrib-
uted to its ability to induce NER genes.

Cell cycle checkpoints represent integral com-
ponents of DNA repair that coordinate coopera-
tion between the machinery of the cell cycle and
several biochemical pathways that respond to
damage and restore DNA structure. By delay-
ing progression through the cell cycle, check-
points provide more time for repair before
the critical phases of DNA replication, when
the genome is replicated, and of mitosis, when
the genome is segregated. Loss or attenuation of
checkpoint function may increase spontaneous
and induced gene mutations and chromosomal
aberrations by reducing the efficiency of DNA
repair. In fact many BRCA1 target genes like
p21WAFVCIPL 41 d Gadd45 would induce a robust
cell cycle arrest thus allowing cells enough time
to repair the damaged DNA. As discussed early,
overexpression of BRCAL1 can cause both G1/S
and G2/M arrest. Several BRCA1 target genes,
whose activation or repression by BRCA1 can
bring about a clear G1/S or G2/M arrest. The
details are given above in the previous sections.
The ability of BRCA1 to induce G1/S arrest
could be linked to BRCA1 targets p21WVAFY/CIPL
[Somasundaram et al., 1997; Ouchi et al., 1998;
Zhang et al., 1998; Li et al., 1999; Maclachlan
et al., 2000; Welcsh et al., 2002] and p27(Kipl)
[Williamson et al., 2002]. BRCA1 induced G2/M
arrest could be attributed to BRCA1 targets
Gadd45 [Harkin et al., 1999; Maclachlan et al.,
2000; Mullan et al., 2001; Fan et al., 2002], 14-3-
36 [Aprelikova et al., 2001], and Cyclin B1
[Maclachlan et al., 2000].

CONCLUSIONS

Involvement of BRCA1 in the development
of hereditary breast cancer is very well estab-
lished. Development of breast cancer among
BRCA1 mutation carriers is accompanied by
the loss of remaining WT BRCA1 allele, which
suggests the importance of BRCA1 protein in
the etiology of the disease. It is now becoming
apparent that BRCA1 is a protein with complex
and diverse set of functions. Several lines
evidence implicates that BRCA1 is a protein
with DNA repair function. Isolation of many
BRCAl interacting proteins, implicated in DNA
repair processes, suggests that BRCA1 protein
may be directly involved in the repair process.
However, the identification of a handful of
BRCA1 target genes, many of which either dir-
ectly or indirectly by inducing cell cycle arrest
involved in DNA repair process, suggest an
additional model by which BRCA1 would parti-
cipate in the DNA repair. That means a more
elaborate study of transcriptional control by
BRCA1 isrequired to understand better its role
in DNA repair processes.
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